The correct option is
D Lcosθsin2θ2h−lcos2θsinθFigure(b) gives the forces .
R2=Reactional force on rod by ground
R1= Reactional force on rod by wall
f= frictional force =μR2
θ is the maximum angle the rod can make with horizontal.
Equating the forces on verticle direction we get
R2=mg−R1cosθ−−−−−−−−(1)
Equating the forces on horizontal direction we get
R1sinθ=f=μR2
Now the torque about point B should be balanced
R1cosθ×AB+R1Sinθ×h=mgl2cosθ
⟹R1h[cos2θ+sin2θsinθ]=mgl2cosθ
⟹R1=mgl2hcosθsinθ
⟹R1cosθ=mgl2hcos2θsinθ
So, R2=mg−mgl2hcos2θsinθ=mg2h(2h−lcos2θsinθ)
And μ=R1sinθR2=mgh2hcosθsin2θmg2h(2h−lcos2θsin2θ)
μ=lcosθsin2θ2h−lcos2θsinθ