Displacement equation of a stationary wave
y=2Asin(knx)sin(wnt)First overtone means n=2
Kinetic energy of a small element dE=12(μdx)(dydt)2
⟹ dE=12(μdx)(2Asin(knx))2×w2ncos(wnt)
∴ dE=2A2w2nμsin2(knx)dx .........(1)
Given : A=ao
Also First overtone frequency ν2=22l√Tμ ⟹ ν22=Tμl2
As wn=2πν2
∴ w2n=4π2ν22=4π2×Tμl2
Also kn=nπx2l=2πx2l=πxl
Putting these values in (1) we get, dE=2a2oμ×(4π2×Tμl2)sin2(knx)dx
⟹ dE=8a2oπ2Tl2sin2(πxl)dx
Total kinetic energy E=8a2oπ2Tl2∫sin2(πxl)dx
E=8a2oπ2Tl2∫l01−cos(2πx/l)2dx
E=8a2oπ2Tl2×12×[x∣∣∣l0−sin(2πx/l)(2πx/2)∣∣∣l0]
E=8a2oπ2Tl2×12×[l−0] ⟹ E=4a2oπ2Tl
∴ x=4