wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A uniform thin cylindrical disc of mass M and radius R is attached to two identical massless spring constant k which are fixed to the wall as shown in Figure. The springs are attached to the axle of the disk symmetrically on either side at a distance d from its centre. The axle is massless and both the springs and the axle are in the horizontal plane. The unstretched length of each spring is L. The disc is initially at its equilibrium position with its centre of mass (CM) at a distance L from the wall. The disc rolls without slipping with velocity V0=V0^i. The coefficient of friction is μ.
The maximum value of V0 for which the disc will roll without slipping is :
985451_fb291a5104ad4ba0881da15e149d2528.jpg

A
μgMk
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
μgM2k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
μg3Mk
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
μg5M2k
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C μg3Mk
By Newton's 2nd law, we have
2kxfmax=ma
2kxr=Ipα -(i.)
fmax=μmg -(ii.)
From (i.) and (ii.), we have
x=32μmg2k
12(2k)x2=12Ipω2
Hence, we have
v=μg3Mk

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
All Strings Attached
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon