A unit vector coplanar with ^i+^j+2^k and ^i+2^j+^k and perpendicular to ^i+^j+^k is_________
Let the unit vector be xˆi+yˆj+zˆk
then x2+y2+z2=1 −(1)
since this vector is coplaner with ˆi+ˆj+2ˆk and ˆi+2ˆj+ˆk
therefore
⇒∣∣ ∣∣xyz112121∣∣ ∣∣=0
⇒x(1−4)(1−2)+z(2−1)=0
⇒−3x+y+z=0
⇒3x−y−z=0−(2)
also this unit vector is perpendicular to ˆi+ˆj+ˆk
so, x+y+z=0−(3)
Adding 2 and 3 we get
4x=0
⇒x=0
from 3
x+y+z=0
⇒y+z=0
⇒y=−z
putting value of x and y in (1)
x2+y2+z2=1
⇒0+z2+z2=1
⇒2z2=1
⇒z2=12
⇒z=±1√2
if z=1√2⇒y=−1√2
and if z=−1√2⇒y=1√2
thus the required unit vector is
−1√2ˆj+1√2ˆk or 1√2ˆj+−1√2ˆk
Therefore the required vector is −1√2ˆj+1√2ˆk