A value of b for which the equations x2+bx−1=0,x2+x+b=0 have one root in common is
−i√3
If a1x2+b1x+c1=0
and a2x2+b2x+c2=0
have a common real root, then
⇒(a1c2−a2c1)2=(b1c2−b2c1)(a1b2−a2b1)
∴x2+bx−1=0x2+x+b=0}have a common root.⇒(1+b)2=(b2+1)(1−b)⇒b2+2b+1=−b3+b2+1−b⇒b3+3b=0∴b(b2+3)=0⇒b=0,±√3i