A value of θ for which z=2+3isinθ1−2isinθ is purely imaginary, is
A
π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π6
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
sin−1(√34)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
sin−1(1√3)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Dsin−1(1√3) Let z=2+3isinθ1−2isinθ is purely imaginary. The, we have Re(z) = 0 Now, consider z=2+3isinθ1−2isinθ =(2+3isinθ)(1+2isinθ)(1−2isinθ)(1+2isinθ)=(2+4isinθ+3isinθ+6i2sin2θ)12−(2isinθ)2=(2+7isinθ−6sin2θ)1+4sin2θ=2−6sin2θ1+4sin2θ+i7sinθ1+4sin2θ ∵Re(z)=0 ∴2−6sin2θ1+4sin2θ=0⇒2=6sin2θ ⇒sin2θ=13⇒sinθ=±13⇒θ=sin−1(±1√3)=±sin−1(1√3)