The correct option is B π9
∣∣
∣
∣∣1+cos2θsin2θ4cos6θcos2θ1+sin2θ4cos6θcos2θsin2θ1+4cos6θ∣∣
∣
∣∣=0
Apply - R2→R2−R1,R3→R3−R1
⇒∣∣
∣
∣∣1+cos2θsin2θ4cos6θ−110−101∣∣
∣
∣∣=0
Apply - C1→C1+C2
⇒∣∣
∣
∣∣2sin2θ4cos6θ010−101∣∣
∣
∣∣=0
Expanding along C1
⇒2(1−0)−1(−4cos6θ)=0⇒cos6θ=−12
θ∈(0,π3)⇒6θ∈(0,2π)
So,
6θ=2π3,4π3⇒θ=π9,2π9