L is x−2cosθ=y−5sinθ=r1PrRr2Q
where r1,r,r2 are in H.P.
or 2r=1r1+1r2
2x2−5xy+2y2=0
or (2x−y)(x−2y)=0
P lies on 2x−y=0,Q on x−2y=0
2(r1cosθ+2)−(r1sinθ+5)=0
r1(2cosθ−sinθ)=1
∴1r1=2cosθ−sinθ
Similarly 1r1=cosθ−2sinθ8
∴1r1+1r2=17cosθ−10sinθ8
But 1r1+1r2=2r=(17cosθ−10sinθ)8
∴16=(17rcosθ−10rsinθ)
If (x,y) be the point R, then
x=rcosθ+2, or rcosθ=x−2
y=rsinθ+5
∴rsinθ=y−5
Eliminating θ between (1) and (2), we get
16=[17(x−2)−10(y−5)]=(17x−10y+16)
or 17x−10y=0 is the required locus.