A variable line passes through a fixed point (a,b) and meets the coordinates axes in A and B. The locus of the point of intersection of lines through A, B parallel to coordinate axes is-
Letslopeoflinebemthenequationofliney−b=m(x−a)atpointAy=0∴−b=m(x−a)orx=(−bm)+aatpointBx=0∴y−b=m(0−a)y=−ma+b∴h=(−bm)+a→(1)andK=−ma+borm=(b−Ka)usevalueofminequation(1),wegeth=(−b(b−Ka))+ah=(−abb−K)+ah=(−ab+a(b−k)b−k)hb−hK=−ab+ab−aK(hb−hKhK)=(−aKhK)or(bK)−1=(−ah)or(ah)+(bK)=1or(ax)+(by)=1