Volume of tetrahedron
OABC =16∣∣
∣∣a000b000c∣∣
∣∣=16abc=32A) Let centroid be (h,k,l) then h=a4,k=b4,l=c4
Gives abc64=hkl
⇒abc=64hkl⇒32×6=64hkl
⇒hkl=3
Hence xyz=3
B) Let point equidistant from O,A,B and C be (h,k,l)
Then h=a2,k=b2,l=c2
abc8=hkl
⇒abc=8hkl
⇒32×6=8hkl
⇒xyz=24
C) Let the equation of plane be
h(x−h)+k(y−k)+l(z−l)=0⇒hx+ky+lz=h2+k2+l2
Now as A satisfies the equation plane then
ah=h2+k2+l2⇒a=h2+k2+l2h
Similarly b=h2+k2+l2k and c=h2+k2+l2l
Then abc=(h2+k2+l2)3hkl
Therefore locus is (x2+y2+z2)3=192xyz
D) Let the point be (h,k,l), then
→PA=(a−h)^i−k^j−l^k
→PB=h^i+(b−k)^j−l^k
→PC=−h^i−k^j−(c−l)^k
Now
→PA⋅→PB=0⇒−h(a−h)−k(b−k)+l2=0⇒h2+k2+l2=ah+bk ...(1)
Similarly h2+k2+l2=bk+cl ...(2)
And h2+k2+l2=cl+ah ...(3)
From (1), (2) and (3) we get ah=bk=cl
Therefore,
a=h2+k2+l22h,b=h2+k2+l22k,c=h2+k2+l22l
abc=(h2+k2+l2)38hkl
⇒32×6×8xyz=(x2+y2+z2)3
⇒(x2+y2+z2)3=1536xyz