Vertices on co-ordinate of tetrahedron OABC,
So,co−ordinateofO(0,0,0),A(x,0,0),B(0,y,0),C(0,0,z)−−→OA=x^i,−−→OB=y^j,−−→OC=z^kValueoftetrahedron⇒16[→a→b→c]v=16{→a.(→b×→c)}v=16{x^i.(y^j×3^k)}⇒16{x^i.(yzj^i)}{i.^i=1}v=xyz6xyz=6×64k3→(i)[v=64k3←Given]Centroidis(x4,y4,z4)Letthecentre(x,y,z)
Comparing both, we get,
x4=x,⇒x=4x,y=4y,z=4z
Put the value in equation (i), we get
4x1,4y1,4z1=6×64k3⇒61x1y1z1=6×64k3x1y1z1=6k3xyz=6k3