The correct option is
D 2xy(a+b)=ab(x+y)we have,
xa+yb=1andxb+ya=1
⇒bx+ay−ab=0⟶(1)
and,ax+by−ab=0⟶(2)
Equation of line through their point of intersection will be given by:
(bx+ay−ab)+k(ax+by−ab)=0
where k is constant
⇒x(b+ak)+y(a+bk)−ab(k−1)=0
Line meet x-axis at A, hence for A, y=0
⇒x(b+ak)−ab(k−1)=0
⇒x=ab(k−1)(b+ak)
so, coordinate of A is (ab(k−1)(b+ak),0)
Line meets y-axis at B, hence for B, x=0
⇒y(a+bk)−ab(k−1)=0
⇒y=ab(k−1)(a+bk)
so, coordinate of B is (0,ab(k−1)(a+bk))
Let (h,m) be midpoint of AB, hence
h=ab(k−1)(b+ak)+02
⇒k=ba(2h+ab−2h)⟶(3)and,m=0+ab(k−1)a+bk2
⇒k=ab(2m+ba−2m)⟶(4)
From (3) and (4) we get
⇒ba(2h+ab−2h)=ab(2m+ba−2m)
To get equation of locus we take h→xandm→y
⇒ba(2x+ab−2x)=ab(2y+ba−2y)
⇒2xy(a+b)=ab(x+y)