The correct option is B 16x2+y2+10xy=2
Let two points on the hyperbola A≡(t1,1t1) and B≡(t2,1t2)
∴ slope of AB=4
⇒t1t2=−14⋯(1)
Now let P(h,k) on the line AB
Case 1: AP:PB=1:2
h=2t1+t23,k=t1+2t23t1t2⇒t1=8h+k4,t2=−(k+2h)2
using (1)
(8h+k)(k+2h)=2
Hence locus will be
16x2+y2+10xy=2
Case 2: AP:PB=2:1
h=t1+2t23,k=2t1+t23t1t2⇒t1=−(2h+k)2,t2=8h+k4
using (1)
(8h+k)(k+2h)=2
Hence locus will be
16x2+y2+10xy=2