We have,
Let the variable plane at distance 3p from the origin be ax+by+cz=3p......(1)
Where a,b,c are the direction cosines of the normal to the plane.
This meet the Y-axis in A.
Thus y=z=0.
Now,
ax=3p
x=3pa
Similarly,
Coordinate of B and C are,
B=(0,3pa,0)
C=(0,0,3pc)
Now,
Let the centroid of ABC is G(x,y,z) using the formula of centroid
(x,y,z)=(x1+x2+x33,y1+y2+y33,z1+z2+z33)
⇒G(x,y,z)=⎛⎜ ⎜ ⎜⎝3pa+0+03,0+3pa+03,0+0+3pa3⎞⎟ ⎟ ⎟⎠
⇒G(x,y,z)=(pa,pa,pa)
Now,
a=px,y=pb,z=pc
We know that,
a2+b2+c2=1
⇒p2x2+p2y2+p2z2=1
⇒1x2+1y2+1z2=1p2
Hence, this is the answer.