A(→a), B(→b), C(→c) are the vertices of a triangle ABC and R(→r) is any point in the plane of triangle ABC, then →r.(→a×→b+→b×→c+→c×→a) is always equal to
[→a →b →c]
A vector perpendicular to the plane of A(→a), B(→b), C(→c) is (→b−→a)×(→c−→a)=→a×→b+→b×→c+→c×→a
Now for any point R(→r) in the plane of A, B, C
(→r−→a).(→a×→b+→b×→c+→c×→a)=0⇒→r.(→a×→b+→b×→c+→c×→a)−→a.(→a×→b+→b×→c+→c×a)=0⇒→r.(→a×→b+→b×→c+→c×→a)=0+→a.→b×→c+0⇒→r.(→a×→b+→b×→c+→c×→a)=[→a →b →c]