A vector of magnitude √2 coplanar with the vectors →a=^i+^j+2^k and →b=^i+2^j+^k and perpendicular to the vector →c=^i+^j+^k is
(1) −^i−^k (2) ^j−^k (3) ^i−^j (4) ^i+^k
Let →O=A^i+B^ȷ+c^k
|→O|=√2=√A2+B2+C2
[→c⋅→a→b]=0 (coplanar) ⇒∣∣ ∣∣ABc112121∣∣ ∣∣=0⇒A(1−4)−B(1−2)+c(2−1)=0⇒−3A+B+C=0⇒3A−B−C=0 -(i)
And. →O⊥γ→c
→O⋅→c=0
⇒A+B+C=0−(ii)
By across multiplication, we got
A=0,B=4k,c=−4k
√2=√0+16k2+16k2
⇒√2−√32k2
Squaring both sides
⇒2=32k2
⇒k2=116
k=±14
⇒ →0=^ȷ−^k or −^j+^k