Let the steps moved down be represented by positive integers and the steps moved up be represented by negative integers.
(i) Initially, the monkey was at step = 1
After 1st jump, the monkey will be at step = 1 + 3 = 4
After 2nd jump, the monkey will be at step = 4 + (−2) = 2
After 3rd jump, the monkey will be at step = 2 + 3 = 5
After 4th jump, the monkey will be at step = 5 + (−2) = 3
After 5th jump, the monkey will be at step = 3 + 3 = 6
After 6th jump, the monkey will be at step = 6 + (−2) = 4
After 7th jump, the monkey will be at step = 4 + 3 = 7
After 8th jump, the monkey will be at step = 7 + (−2) = 5
After 9th jump, the monkey will be at step = 5 + 3 = 8
After 10th jump, the monkey will be at step = 8 + (−2) = 6
After 11th jump, the monkey will be at step = 6 + 3 = 9
Clearly, the monkey will be at water level (i.e., 9th step) after 11 jumps.
(ii) Initially, the monkey was at step = 9
After 1st jump, the monkey will be at step = 9 + (−4) = 5
After 2nd jump, the monkey will be at step = 5 + 2 = 7
After 3rd jump, the monkey will be at step = 7 + (− 4) = 3
After 4th jump, the monkey will be at step = 3 + 2 = 5
After 5th jump, the monkey will be at step = 5 + (− 4) = 1
Clearly, the monkey will reach back at the top step after 5 jumps.
(iii) If steps moved down are represented by negative integers and steps moved up are represented by positive integers, then his moves will be as follows.
Moves in part (i)
− 3 + 2 − 3 + 2 − 3 + 2 − 3 + 2 − 3 + 2 − 3 = −8
Moves in part (ii)
4 − 2 + 4 − 2 + 4 = 8
Moves in part (ii) represent going up 8 steps