y=1mmsin(πx200m+tπ1sec)
(a) We know, the displacement relation in a wave
y(x,t)=asin(kr−ωt)
By comparison we find,
Amplitude ⇒a=1mm
Wave number⇒k=π20
Angular frequency⇒ω−π1sec
Then,
Time period ⇒T=2πω=2ππ/1=2ππ×1=2s
Wavelength⇒λ=2πk=2ππ/20=2ππ×20=40cm.
(b) Equation for velocity of particles can be found by differentiating the equation of displacement wrt t
v=(1mm)(π1sec)cos(πx20cm+tπ1sec)
x=1.0cmatt=0.01secv=(1mm)(π1sec)cos(π×1cm20cm+π×0.01sec1sec)
v=πmm/scos(π20+π100)
v=πmm/scos3π50
v=π1000cos(3π50)m/s
⇒v≈3.139×10−3m/s.
(c) x=3cm,t=0.01s
v=π1000cos(3π20+π100)
v=π1000cos(16π100)
v=π1000cos(2π25)m/s
v≈3.139969822×10−3 m/s
x=5cm,t=0.01s
v=π1000cos(5π20+π100)
v=π1000cos(26π100)
v=π1000cos(13π50)m/s ⇒v≈3.139681248×10−3m/s
x=7cm,t=0.01s
v=π1000cos(7π20+π100)
v=π1000cos(36π100)
v=π1000cos(9π25)m/s
⇒v≈3.139388911×10−3 m/s
(d) x=1cm,t=0.011s
v=π1000cos(π20+11π1000)
v=π1000cos(61π1000)m/s ⇒v≈3.139982454×10−3m/s
x=1cm,t=0.012s
v=π1000cos(π20+12π1000)
v=π1000cos(31π500)m/s ⇒v≈3.139981874×10−3 m/s
x=1cm,t=0.013s
v=π1000cos(π20+13π1000)
v=π1000cos(63π1000)m/s ⇒v≈3.139981285×10−3m/s.