wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

A wave is described by the equation y=(10mm)sinπ(x20cmt001s) (a) Find the time period and the wavelength . (b) Write the equation for the velocity of the particles. Find the speed of the particle at x=10cm at time t=001s (c) What are the speeds Of the particles at x=30cm, 5.0cmand 7.0cm at t=0.01s ? (d) What are the speeds of the particles at x=10cm at t=0011,0012 and 0.013s ?

Open in App
Solution

y=1mmsin(πx200m+tπ1sec)
(a) We know, the displacement relation in a wave
y(x,t)=asin(krωt)
By comparison we find,
Amplitude a=1mm
Wave numberk=π20
Angular frequencyωπ1sec
Then,
Time period T=2πω=2ππ/1=2ππ×1=2s
Wavelengthλ=2πk=2ππ/20=2ππ×20=40cm.
(b) Equation for velocity of particles can be found by differentiating the equation of displacement wrt t
v=(1mm)(π1sec)cos(πx20cm+tπ1sec)
x=1.0cmatt=0.01secv=(1mm)(π1sec)cos(π×1cm20cm+π×0.01sec1sec)
v=πmm/scos(π20+π100)
v=πmm/scos3π50
v=π1000cos(3π50)m/s
v3.139×103m/s.
(c) x=3cm,t=0.01s
v=π1000cos(3π20+π100)
v=π1000cos(16π100)
v=π1000cos(2π25)m/s
v3.139969822×103 m/s
x=5cm,t=0.01s
v=π1000cos(5π20+π100)
v=π1000cos(26π100)
v=π1000cos(13π50)m/s v3.139681248×103m/s
x=7cm,t=0.01s
v=π1000cos(7π20+π100)
v=π1000cos(36π100)
v=π1000cos(9π25)m/s
v3.139388911×103 m/s
(d) x=1cm,t=0.011s
v=π1000cos(π20+11π1000)
v=π1000cos(61π1000)m/s v3.139982454×103m/s
x=1cm,t=0.012s
v=π1000cos(π20+12π1000)
v=π1000cos(31π500)m/s v3.139981874×103 m/s
x=1cm,t=0.013s
v=π1000cos(π20+13π1000)
v=π1000cos(63π1000)m/s v3.139981285×103m/s.

1178429_1160254_ans_b2cd066f1aa24213a596cf46d269c446.jpg

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Surfing a Wave
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon