Let x, y, be the length and breadth of the rectangle ABCD
Let x2 be the radius of semi circle with center o.
And Let P be the perimeter of figure.
∴x+2v+πx2=30
⇒2x+4v+πx=60⇒4v=60−(π+2)x⇒v=60−(π+2)x4........(1)
Now, Let A be area of the figure
∴A=xy+12π(x2)2=x[60−(π+2)x4]+πx28 [∵of(1)]
∴A=14[60−(π+2)x2]+π8x2∴dAdx=14[60−2(π+2)x]+πx4
Now,
dAdx=0⇒14[60−2(π+2)x]+πx4=0⇒60−2(π+2)+πx=0⇒60−2πx−4x+πx=0
d2Adx2=14[0−2(π+2)]+π4=−2(π+2)4+π+44=−π+44
when, x=60π+4,d2Adx2=−π+44<0
Therefore, A is maximum when x=60π+4
And,
v=60−(π+2).60π+44=60π+240−60π−1204(π+4)=30π+4
Hence, area of figure is maximum and maximum light is admitted when length of rectangle x=60π+4
Breadth of rectangle v=30π+4
and radius of semi circle x2=15π+4