Given, length of wire is l.
Let length of one part be x, then other part be l−x.
Let x part be bent into a circle and l−x part be in a square.
∴2πr=x and 4s=1−x⇒s=l−x4(∵s= side )
According to question, we have
r=s2=l−x8
Also, r=x2π
⇒l−x8=x2π
⇒l=8x2π+x=4xπ+x
Sum of areas of circle and square,
f(x)=π(l−x8)2+(l−x4)2
f(x)=π64[(l−x)2+4(l−x)2]
f(x)=π645(l−x)2
=5π64(4xπ+x−x)2
f(x)=5π6416x2π2
f(x)=5x24π
∴f′(x)=54π2x=5x2π
For minimum value, f′(x)=0
⇒52πx=0
⇒x=0
If x=of′"(0)=52π>0
∴f(x) attains minimum at x=0.