The correct option is C 23
A=x2+y2≤9⇒−3≤×≤3
−3≤y≤3
|x−1−x2|≤|x2−3x+4|
⇒−(x2−3x+4)≤(x−1−x2)≤(x2−3x+4)
⇒3x−4≤x−1 and 2x2−4x+5≥0
⇒2x≤3
x≤3/2
So possible integral x are −3,−2,−1,0,1
at x=1y=−2,−1,0,1,2
at x=0y=−3,−2,−1,0,1,2,3
at x=−1y=−2,−1,0,1,2
at x=−2y=−2,−1,0,1,2
at x=−3y=0