A(z1),B(z2),C(z3) are the vertices of a right angeled isosceles triangle ABC. If ∠C = π2, then:
Let AC = AB = r,
Then AB = r√2
z2−z3z1−z3 = BCACeiπ/2 = eiπ/2
z1−z2z3−z2 = ABBCeiπ/4 = √2eiπ/4
and z3−z1z2−z1 = 1√2eiπ/4
∴2(z3−z1)z2−z1 = z1−z2z3−z2
⇒(z1−z2)2 = 2(z1−z3)(z3−z2)