A(z1),B(z2),C(z3) are the vertices of the triangle ABC (in anticlockwise order). If ∠ABC=π/4 and AB=√2(BC).
Then prove that z2=z3+i(z1−z3).
Open in App
Solution
Rotating about the point B, we get z1−z2z3−z2=a√2aeiπ/4=√2(1√2+i√2)=(1+i) z1−z2=(z3−z2)(1+i) or z2=z2−(z3−z2)(1+i) or z2(1−(1+i))=z1−z3(1+i) or z2=z1−i−z3−i(1+i)=(iz1−iz3(1+i))=z3+i(z1−z3).