A(z1),B(z2),C(z3) are the vertices of the triangle ABC (in anticlockwise order). If ∠ABC=π4 and AB=√2(BC), then
A
z2=(z1−z3)+iz3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
z2=z3+i(z1−z3)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
z2=z1+z3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bz2=z3+i(z1−z3)
Rotating about the point B, we get z1−z2z3−z2=(a√2a)eiπ/4=√2(1√2+i√2)=(1+i) ⇒z1−z2=(z3−z2)(1+i) ⇒z2=z1−(z3−z2)(1+i) ⇒z2(1−(1+i))=z1−z3(1+i) ⇒z2=z1−i−z3−i(1+i)=iz1−iz3(1+i) =z3+i(z1−z3)
Alternate Solution:
Given ∠ABC=π4⇒arg(z1−z2z3−z2)=π4⋯(1)
and ABBC=√2⇒|z1−z2||z3−z2|=√2⋯(2)
From (1) and (2) we can say z1−z2z3−z2=√2eiπ/4=1+i⇒z2=z1−(1+i)(z3−z2)⇒z2=z3(1+i)−z1i⇒z2=z3+i(z1−z3)