Concept: 2 Marks
Application: 2 Marks
Let AB and CD be two parallel chords of a circle with centre O such that AB = 6 cm and CD = 12 cm.
Construction:
Join OB and OD
Draw perpendicular bisectors OL of AB and OM of CD. Since
AB∥CD, the points O, M and L are collinear.
Clearly, LM = 3 cm. Let OM = x cm and let OB = OD = r.
From right triangle OLB, we get:
Using Pythagoras Theorem:
OB2=OL2+BL2 or
r2=(x+3)2+32 (i)
(∵BL=12AB=3cm) From right triangle ODM, we get:
Using Pythagoras Theorem:
OD2=OM2+MD2 or
r2=x2+62 (ii)
(∵MD=12CD=6cm) Thus, from (i) and (ii), we get:
(x+3)2+32=x2+62 or
6x=18 or
x=3cm ∴r2=x2+62=32+62=45 or
r=√45=6.7cm Hence, the radius of the circle is 6.7cm.