AB and CD are chords of a circles D and E are mid-points of AB,CD respectively.
⇒ CF=FD=12cm and AE=EB=5cm
⇒ Distance between two chords =17cm
⇒ Distance between O and F=xcm
⇒ Distance between O and E=(17−x)cm
In a △OEB is an right angle triangle then,
⇒ OB2=OE2+EB2 [ By using Pythagoras theorem ]
⇒ OB2=(17−x)2+52 -------- ( 1 )
In a △OFD is an right angle triangle then
⇒ OD2=OF2+FD2 [ By using Pythagoras theorem ]
⇒ OD2=(x)2+122 ----- ( 2 )
But OB=OD [ Radius of a circle ]
From ( 1 ) and ( 2 )
⇒ (17−x)2+52=(x)2+122
⇒ 289+x2−34x+25=x2+144
⇒ 34x=170
∴ x=5
Substituting value of x in equation ( 2 ) we get,
⇒ OD2=52+122
⇒ OD2=25+144
⇒ OD2=169
∴ OD=13cm
∴ Radius of a circle is 13cm