Let O be the centre of the given circle and let its radius be r cm. Draw OP⊥AB and OQ⊥CD.
Since, OP⊥AB, OQ⊥CD and AB∥CD, therefore, points P, O and Q are collinear.
Given: PQ=17 cm
Let OP=x cm. Then, OQ=17−x cm.
Join OA and OC. Then, OA=OC=r.
Since, the perpendicular from the centre to a chord of the circle bisects the chord.
⇒AP=PB=5 cm and CQ=QD=12 cm. [1 Mark]
In right triangle, ΔOAP, we have
OA2=OP2+AP2
In right triangle, ΔOCQ, we have
OC2=OQ2+CQ2
⇒r2=x2+52 … (i)
and, r2=(17−x)2+122 ... (ii)
⇒x2+52=(17−x)2+122 [Equating (i) and (ii)] [1 Mark]
⇒x2+25=289−34x+x2+144
⇒34x=408⇒x=40834=12 cm
Putting x=12 cm in equation (i), we get
r2=144+25=169
⇒r=13 cm.
Hence, the radius of the circle is 13 cm. [1 Mark]