Let OP⊥AB and OQ⊥CD
CQ = QD = 12 cm
AP = BP = 5 cm
Given PQ = 17 , hence OP + OQ = 17
In △AOP
AO2=OP2+AP2
r2=OP2+25−eq.1
In △COQ
CO2=OQ2+CQ2
r2=(17–OP)2+144−eq.2
Eq.2–eq.1
172+OP2−2OP⋅17−OP2+144−25=0
17(17–2OP)+119=0
⟹289−34OP+119⇒34OP=408
⟹OP=12
Substitute in e.q.1
⟹r2=144+25=169
r=13