AB is the diameter of a circle with centre O.
The value of y is
120∘
OC = OB (radis of the circle)
So, x=60∘ (ΔOCB is an isosceles triangle)
So, ∠COB+60+x=180∘
(Sum of angles of a triangle)
∠COB=180−120=60∘
Now,
y+∠COB=180 (angles on a straight line )
y+60=180∘
y=120∘