ABC is a right angled triangle with AB = 12 cm and AC = 13 cm. A circle, with centre O, has been inscribed inside the triangle.
Calculate the value of x, the radius of the inscribed circle.
2 cm
In ΔABC,∠B=90∘
OL⊥AB,OM⊥BC and
ON⊥AC.
∴ LBMO is a square.
LB = BM = OL = OM = ON = x
∴ AL=12−x
∴ AL=AN=12−x ( Tangents from an external point)
∵ΔABC is a right triangle
∴AC2=AB2+BC2
⇒(13)2=(12)2+BC2
⇒169=144+BC2
⇒BC2=169−144=25
∴BC=√25=5 cm
MC=BC−x
∴MC=5−x
But CM = CN
∴ CN=5−x
Now AC = AN +NC
⇒13=12−x+5−x⇒13=17−2x
2x=17−13=4
∴x=42=2 cm