wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

ABC is a right angled triangle with ABC=90o. D is any point on AB and DE is perpendicular to AC. Prove that :
(i) ADEACB.
(ii) If AC=13cm, BC=5cm and AE=4cm. Find DE and AD.
(iii) Find, area of ADE: area of quadrilateral BCED.
577727_285482a77b134b2b852c06ecda2ee366.png

Open in App
Solution

To Prove : ADEACB
Proof :
(i) In ADE and ACB
(1) A=A [common]
(2) AED=ABC=90o (given)
ADEACB [AA axiom]
(ii) (AC)2=(AB)2+(BC)2
169=(AB)2+25
AB=12cm
ADEACB
DEBC=ADAC=AEAB
DEBC=AEAB
DE5=412
DE=2012=53=123cm
Now, ADAC=AEAB
AD13=412
AD=13×412=133=413cm.
(iii) Ar.of(ABC)Ar.of(ADE)=AB2AE2=14416=91
Ar.of(ADE)+Ar.of(BCED)Ar.of(ADE)=9
1+Ar.of(BCED)Ar.of(ADE)=9
Ar.of(ADE)Ar.of(BCED)=18

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Areas of Similar Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon