ABC is a right triangle, right-angled at C. If BC = a,CA = b, AB = c and p be the length of perpendicular from C on AB, then (i) cp=ab (ii) 1p2=1a2+1b2
A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A True Let CD⊥AB. Then, CD=p ∴ Area of ΔABC=12(Base×Height) =12(AB×CD)=12cp Also, Area of ΔABC=12(BC×AC)=12ab ∴12cp=12ab ⇒cp=ab (ii) Since ΔABC is a right triangle, right angled at C. ∴AB2=BC2+AC2 ⇒c2=a2+b2 ⇒(abp)2=a2+b2[∵cp=ab⇒c=abp] ⇒a2b2p2=a2+b2 ⇒1p2=1b2+1a2 ⇒1p2=1a2+1b2