ABC is a triangle. 3 Circles with radii 1,4 and 9 as shown are drawn inside the triangle each touching two sides and the incircle. Then the radius of the incircle of the △ABC is
Open in App
Solution
Let the radius of the incircle of the △ABC is r. ∴XF=√(r+1)2−(r−1)2=√4r=2√r Similarly, YF=√(r+4)2−(r−4)2=√16r=4√r PQ=√(r+9)2−(r−9)2=6√r tanA2=r−12√r;tanB2=r−44√r;tanC2=r−96√r
Using ∑tanA2tanB2=1 ⇒r−12√r⋅r−44√r+r−44√r⋅r−96√r+r−96√r⋅r−12√r=1 Multiplying it throughout by 24r, ⇒3(r−1)(r−4)+(r−4)(r−9)+2(r−9)(r−1)=24r ⇒3(r2−5r+4)+(r2−13r+36)+2(r2−10r+9)=24r ⇒6r2−48r+66=24r ⇒6r2−72r+66=0 ⇒r2−12r+11=0 ⇒(r−11)(r−1)=0 ∴r=11(asr≠1)