ABC is a triangle. E and F are mid points of AC and AB respectively. If the area of △ ABC is λ times the area of △FCE, then λ =
4
Let A be the origin. ¯¯¯¯¯¯¯¯AB=¯¯b,¯¯¯¯¯¯¯¯AC=¯¯c
Area of △ABC=12(¯¯bׯ¯c)
¯¯¯¯¯¯¯¯AF=¯b2,¯¯¯¯¯¯¯¯AE=¯c2⇒¯¯¯¯¯¯¯¯FE=¯c2−¯b2,¯¯¯¯¯¯¯¯FC=¯¯c−¯b2
area of △FCE=12(¯c2−¯b2)×(¯¯c−¯b2)=18|¯¯bׯ¯c|=14.△ABC