ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see the given figure). Show that
(i) △ABE≅△ACF
(ii) AB=AC, i.e., ABC is an isosceles triangle.
(i) In △ABE and △ACF, we have
∠AEB=∠AFC (Each 90∘)
∠A=∠A (Common angle)
BE=CF (Given)
∴△ABE≅△ACF (By AAS congruence rule)
(ii) It has already been proved that
△ABE≅△ACF
⇒AB=AC (By CPCT)
So, ABC is an isosceles triangle.