ABC is a triangle in which ∠B=2∠C.D is a point on BC such that AD bisects ∠BAC and AB=CD. Prove that ∠BAC=72∘.
Given : In ΔABC,
∠B=2∠C,AD is the bisector of ∠BAC
AB = CD
To prove : ∠BAC=72∘
Donstruction : Draw bisector of ∠B which meets AD at O
Proof : AC at E join ED
In ΔABC,
∠B=2∠C
OB is the bisector of ∠B
∴ ∠C=12∠B=∠1
∴ In ΔBCE,
∠1=C
∴ BE=EC (Opposite side of equal angles)
Now in ΔABE and ΔCDE,
AB = CD (Given)
∠2=∠C
BE=EC
∴ ΔABE≅ ΔCDE (SAS axiom)
∴ ∠BAE=∠CDE (c.p.c.t.)
∴ AE=ED (Opposite sides)
Let ∠CDE=2x, and ∠ADE=∠DAE=x
(∵ ∠A=2x)
In Δ ABD, we have,
∠ADC=∠ABD+∠BAD⇒x+2x=2y+x
⇒ 2x=2y ⇒x=y
In ΔABC,
∠A+∠B+∠C=180∘
(Angles of a triangle)
⇒ 2x+2y+y=180∘
⇒ 2x+x+x=180∘ ⇒5x=180∘
⇒ x=180∘5=36∘
∴ ∠BAC=2x=2×36∘=72∘
Hence proved.