The correct options are
A (−12+2√3,5+3√32)
B (−12+2√3,5−3√32)
Let A≡(1,3),B≡(−2,7) and C≡(x,y)
As △ABC is equilateral then AB=AC=BC
AB=AC⇒(AB)2=(AC)2⇒(−2−1)2+(7−3)2=(x−1)2+(y−3)2
⇒x2+y2−2x−6y−15=0 ...(1)
And
AB=BC⇒(AB)2=(BC)2⇒(−2−1)2+(7−3)2=(x+2)2+(y−7)2
⇒x2+y2+4x−14y+29=0 ...(2)
Solving (1) and (2)
(x,y)=(−12+2√3,5±3√32)