ABC is an equilateral triangle, P is a point on BC such that BP : PC = 2 : 1. Then AP2AB2=
79
Construction: Draw AD ⊥ BC
Given: BP : PC = 2 : 1
⇒BP=23BC=23AB.
AD⊥BC⇒BD=12BC=12AB.
DP = BP - BD
⇒DP=23AB−12AB=AB6 .... (1)
In right triangle ABD,
AD2+BD2=AB2
⇒AB2=AD2+(AB2)2
⇒AD2=AB2−AB24=3AB24 .... (2)
In ΔADP
AP2=AD2+DP2
=3AB24+(AB6)2 [From 1 & 2]
=3AB24+AB236
=27AB2+AB236
=28AB236
⇒AP2AB2=2836=79