wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

ABC is an equilateral triangle P is a point on BC such that BP:PC=2:1.
Prove that : 9AP2=7AB2

Open in App
Solution


From ΔABM,

Let AMBC

AB2=BM2+AM2

=(3x2)2+AM2

=9x24+(AP2MP2) ...[from ΔAMP]

=9x24+AP2(x2)2

AB2=AP2+2x2

AB22x2=AP2

9AB218x2=9AP2 ....[multiplying by 9]

9AB22(9x2)=9AP2

9AB22(3x)2=9AP2

9AB22(AB)2=9AP2

7AB2=9AP2

Hence proved.


470321_187901_ans.PNG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon