From ΔABM,
Let AM⊥BC
AB2=BM2+AM2
=(3x2)2+AM2
=9x24+(AP2−MP2) ...[from ΔAMP]
=9x24+AP2−(x2)2
AB2=AP2+2x2
AB2−2x2=AP2
9AB2−18x2=9AP2 ....[multiplying by 9]
9AB2−2(9x2)=9AP2
9AB2−2(3x)2=9AP2
9AB2−2(AB)2=9AP2
7AB2=9AP2
Hence proved.
ABC is an equilateral triangle, P is a point on BC such that BP : PC = 2 : 1. Then AP2AB2=