abc≠0 & a,b,c∈R. If x1 is a root of a2x2+bx+c=0, x2 is a root of a2 x2−bx−c=0 and x1>x2>0, then the equation a2x2+2bx+2c=0 has a root x3 such that
x1>x3>x2
x1 is a root of a2x2+bx+c=0 ⇒ a2x21+bx1+c=0
x2 is a root of a2x2−bx−c=0 ⇒ a2x22−bx2−c=0
Let f(x)=a2x2+2bx+2c
Put x=x1:
f(x1)=a2x21+2bx1+2c
=−a2x21
Now, put x=x2
f(x2)=a2x22+2bx2+2c
=3a2x22
f(x1).f(x2)=(3a2 x22)(−a2 x21)<0
∴ One root of a2x2+2bx+2c=0 will lie between x1 & x2.
⇒x1>x3>x2 (∵x1>x2)