The correct option is
A True
ABCD and
AEFD are two parallelograms.
(i)
In △EPA and △FQD
⇒ ∠PEA=∠QFD [ Corresponding angles ]
⇒ ∠EPA=∠FQD [ Corresponding angles ]
⇒ PA=QD [ Opposite sides of parallelogram ]
⇒ △EPA≅△FQD [ By AAS condition ]
∴ EP=FQ [ C.P.C.T ]
(ii)
Since, △PEA and △QFD stand on the same base PE and FQ lie between the same parallels EQ and AD.
∴ ar(△PEA)ar(△QFD) ---- ( 1 )
And ar(△PFA)=ar(△PFD) ----- ( 2 )
Divide the equation ( 1 ) by equation ( 2 )
⇒ ar(△PEA)ar(△PFA)=ar(△QFD)ar(△PFD)
(iii)
From part (i) △EPA≅△FQD
Then, ar(△EPA)=ar(△FQD)
i.e. ar(△PEA)=ar(△QFD)
Thus, we can see all three statements are correct.