ABCD is a cyclic quadilateral whose diagonals intersect at a point E. If ∠DBC=70∘ and ∠BAC=30∘, find ∠BCD. Further if AB = BC, find ∠ECD.
50o
∠CDB=∠BAC=30∘...(i) [Angles in the same segment of a circle are equal] ∠DBC=70∘.....(ii)
In ΔBCD,
∠BCD+∠DBC+∠CDB=180∘ [Sum of all the angles of a triangle is 180∘]
∠BCD+70∘+30∘=180∘ [Using (i) and (ii)]
∠BCD+100∘=180∘
∠BCD=180∘−100∘
∠BCD=80∘.....(iii)
In ΔABC, AB=BC
∴∠BCA=∠BAC=30∘ [Angle opposite to equal sides of a triangle are equal]...(iv)∠BAC=30∘ (given)
Now ∠BCD=80∘
⇒∠BCA+∠ECD=80∘
⇒30∘+∠ECD=80∘
⇒∠ECD=80∘−30∘
⇒∠ECD=50∘