We know that the sum of the measure of opposite angles in a cyclic quadrilateral 180∘ Therefore, ∠A+∠C=180.
4y+20−4x=180
−4x+4y=160
x−y=−40 ....(i)
Also, ∠B+∠D=180
3y−5−7x+5=180
−7x+3y=180 .....(ii)
Multiplying equation (i) by 3, we obtain
3x−3y=−120 ......(iii)
Adding equations (ii) and (iii) we obtain,
7x+3x=180−120
−4x=60
x=−15
By using equation (i), we obtain,
x−y=−40
−15−y=−40
y=−15+40=25
∠A=4y+20=4(25)+20=120∘
∠B=3y−5=3(25)−5=70∘
∠C=−4x=−4(−15)=60∘
∠D=−7x+5=−7(−15)+5=110∘