ABCD is a cyclic quadrilateral in which BC is parallel to AD, angle ADC = 1100 and angle BAC = 500. Select the statements that are true.
∠DAC=60o
∠DCA=10o
ABCD is a cyclic quadrilateral in which AD || BC
∠ADC=1100, ∠BAC=500
∠B + ∠D=1800
(Sum of opposite angles of a cyclic quadrilateral.)
⇒∠B+1100=1800
∴∠B or ∠ABC=1800−1100=700
Now, in Δ ABC,
∠BAC+∠ABC+∠ACB=1800
⇒500+700+∠ACB=1800
⇒1200+∠ACB=1800
∴∠ACB=1800−1200=600
∵ AD|| BC (Given)
∴∠DAC=∠ACB (Alternate angles)
=600
Now, in Δ ADC,
∠DAC+∠ADC+∠DCA=1800
600+1100+∠DCA=1800
1700+∠DCA=1800
∴∠DCA=1800−1700=100