Given : ABCD lie on a circle, ∠ADC=130∘,andBC is the diameter.
We know that opposite angles in a cyclic quadrilateral add up to 180∘,
⇒∠ADC+∠ABC=180∘
⇒∠ABC=180−∠ADC=180−130=50∘
As BC is the diameter,
⇒∠BAC=90∘,
⇒∠ACB=180−(∠ABC+∠BAC)=180−(50+90)=40∘
Alternatively, you can do it this way:
As BC= diameter, BDC=90∘,
⇒∠BDA=130−90=40∘
⇒∠ACB=∠BDA=40∘