ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC=70∘, ∠BAC is 30∘, find ∠BCD. Further if AB=BC, find ∠ ECD .
Open in App
Solution
∠DBC=70o,∠BAC=30o, then ∠BCD=? AB=BC, then ∠ECD=? ∠DAC and ∠DBC are angles in same segment ∴∠DAC=∠DBC=70o ∴∠DAC=70o
∴∠DAC+∠BAC=70+30=100 ABCD is a cyclic quadrilateral ∴ Sum of opposite angles is 180o 100+∠DCB=180 [∵∠DAC+∠BAC=∠DAB=100] ∠DCB=180−100 ∴∠DCB=80 ∠DCB=∠BCD=80 ∴∠BCD=80 In △ABC,AB=AC ∴∠BAC=∠BCA=30o ∠BCA=30o ∠ECD=∠BCD−∠BCA=80−30 ∴∠ECD=50o