ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If ∠DBC=70o,∠BAC=30o, find ∠BCD. Further, if AB= BC, find ∠ECD.
A
70o&60o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
30o&100o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
80o&50o.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
100o&30o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A80o&50o. Given−ABCDisacyclicquadrilateral.ItsdiagonalsAB&CDintersectatE.∠DBC=70o,∠BAC=30o.Tofindout−∠BCD=?Also,ifAB=BCthen∠ECD=?Solution−BCsubtends∠BDC&∠BACtothecircumferenceofthegivencircleatD&Arespectively.∴∠BDC=∠BAC=30o[sincetheangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal].∴∠BCD=180o−(∠DBC+∠BDC)(anglesumpropertyoftriangles)⟹∠BCD=180o−(70o+30o)=80o.Again,inΔABCwehaveAB=BC.i.eΔABCisisosceleswithACasbase.∴∠BAC=∠BCA=30o.So∠ECD=∠BCD−∠BCA=80o−30o=50o.∴∠BCD&∠ECDarerespectively80o&50o.Hence,optionCiscorrect.