wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ABCD is a cyclic quadrilateral whose diagonals intersect at a point E. If DBC=70o,BAC=30o, find BCD. Further, if AB= BC, find ECD.

A
70o&60o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
30o&100o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
80o&50o.
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
100o&30o.
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 80o&50o.
GivenABCDisacyclicquadrilateral.ItsdiagonalsAB&CDintersectatE.DBC=70o,BAC=30o.TofindoutBCD=?Also,ifAB=BCthenECD=?SolutionBCsubtendsBDC&BACtothecircumferenceofthegivencircleatD&Arespectively.BDC=BAC=30o[sincetheangles,subtendedbyachordofacircletodifferentpointsofthecircumfereceofthesamecircle,areequal].BCD=180o(DBC+BDC)(anglesumpropertyoftriangles)BCD=180o(70o+30o)=80o.Again,inΔABCwehaveAB=BC.i.eΔABCisisosceleswithACasbase.BAC=BCA=30o.SoECD=BCDBCA=80o30o=50o.BCD&ECDarerespectively80o&50o.Hence,optionCiscorrect.
303030_244148_ans.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Circles and Quadrilaterals - Theorem 9
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon