ABCD is a cyclic quadrilateral with AB∥DC. Find the relation between the lengths of the non parallel sides AD & BC.
A
AD=BC
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
AD≠BC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
AD>BC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
AD<BC
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is AAD=BC Given−ABCDisacyclicquadrilateralwithAB∥DC.Tofindout−therelationbetweenthelengthsofthenonparallelsidesAD&BC.Solution−WejoinAC&BD.SinceAB∥DC,wehave,∠ADC+∠DAB=180o........(i).Again,ABCDisacyclicquadrilateral.∴∠DAB+∠BCD=180o......(ii).(sincethesumoftheoppositeanglesofacyclicquadrilateral=180o).Sofrom(i)&(ii)weget,∠ADC=∠BCD.......(iii).Also,thechordDCsubtends∠DAC&∠DBCtothecircumferenceofthecircleatA&Brespectively.∴∠DAC=∠DBC(sinceangles,subtendedbyachordofacircletoitscircumference,areequal)...........(iv).NowbetweenΔADC&ΔBDCwehave,using(iii)&(iv),∠ADC=∠BCD,∠DAC=∠DBC.Sothethirdangles∠BDC=∠ACBandDCiscommonside.∴ByASAtest,ΔADC≡ΔBDC⟹AD=BC.Hence,optionCiscorrect.