wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

ABCD is a parallelogram. AE and AF are bisectors of interior and exterior angles respectively at A and BE and BF are bisectors of interior and exterior angles respectively at B. Show that AFBE is a parallelogram.
1117851_ad30b5c180f040758327905f67796bc3.png

Open in App
Solution

AEisbisectorofanangleABDAE=EAB..............(i)BEisbisectofangleCBACBE=EBA...............(ii)DABCDAB+CBA=180DAE+EAB+CBE+EBA=180fromeq(i)and(ii)EAB+EAB+EAB+EAB=18002(EAB+EBA)=1800EAB+EAB=900..............(iii)InΔAEBAEB+EAB+EBA=1800(propertyofΔ)fromeqn...(iii)AEB+90=1800AEB=900E=900........(iv)Similarly,F=900.........(v)AFisbisectofBAMBAF=MAF......(vi)DAB+BAM=180o(linearpair)DAB+EAB+BAF+MAF=1800Fromeqn(i)and(vi)EAB+EAB+BAF+BAF=1800EAB+BAF=900A=900..........(vii)SimilarlyBFbisectABNandwewillobtainB=900.........(vii)SinceA=B=900andE=F=900oppositeanglesareequalhenceAFBEisaparallelogram.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Criteria for Similarity of Triangles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon