In a parallelogram
ABCD,
∠A=∠C (opposite angles of a parallelogram)
⟹12∠A=12∠C ............(i)
Since AE and CF bisects ∠A and ∠C
⟹∠DAE=∠EAB and ∠BCF=∠FCD ................(ii)
From (i) & (ii)
∠EAB=∠FCD
and ∠CFB=∠FCD (AB // CD and CF is a transversal)
∴∠CFB=∠EAB ( corresponding angles )
Hence AE∥FC